

MBS-003-027601 Seat No. _____

M. Sc. (ECI) (Sem. VI) (CBCS) Examination April / May - 2018

Advanced Concepts of Control System: Paper-21

Faculty Code: 003 Subject Code: 027601

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

- 1 Answer the following questions in brief: (any Seven) 14
 - 1. What is basic idea behind root-locus method?
 - 2. What is root contour?
 - 3. Enlist the commonly used representations for sinusoidal transfer functions.
 - 4. Enlist basic factors that very frequently occur in an arbitrary transfer function.
 - 5. How can one determine static position error constant?
 - 6. Draw the Bode diagram of $G(j\omega) = 1/j\omega$.
 - 7. What is effect of additional poles?
 - 8. Why we need lead compensation?
 - 9. What is the Nyquist stability criteria?
 - 10. Show that the lead and lag compensators in cascade with open loop system acts as PI control for high frequencies.
- 2 Attempt any two of the following questions: (Each 7 Marks) 14
 - 1. Consider a unity-feedback system whose feed-forward transfer function is $G(s) = \frac{1}{s^2}$. It is desired to insert a series compensator so that the open-loop frequency-response curve is tangent to M = 3dB circle at $\omega = 3 \, rad \, / \sec$. Design appropriate series compensator.
 - 2. Write a detailed note on root-locus analysis of control system.
 - 3. What is lag compensation? Explain lag compensation techniques based on the root-locus approach.

- 3 Answer the following questions:
 - 1. Sketch the root-loci of the control system described by block diagram below:

- 2. Write a note on compensators.
- 3. Show that the transfer function U(s)/E(s) of the

system shown below is
$$\frac{U(s)}{E(s)} = K_0 \left[\frac{T_1 + T_2}{T^1} + \frac{T_1 T_2 s}{T_1 + T_2} \right].$$

Assume $K \gg 1$.

OR

- 3 1. Describe preliminary design considerations.
 - 2. For the system shown below, design a lag compensator Gc(s) such that the static velocity error constant kv is 50 sec^{-1} without changing the location of original closed loop poles which are at $s = -2 \pm j\sqrt{6}$.

3. Write a short note on stability analysis using Nyquist 4 stability criterion.

5

5

5

- 4 Answer the following questions:
 - For the space vehicle control system shown below,
 determine the gain K such that the phase margin is
 50°. What is the gain margin in this case ?

- 2. Enlist basic factors that very frequently occur in an arbitrary transfer function. Explain any one of them in detail.
- 3. Explain the relationship between system type and logmagnitude curve.
- 5 Answer any two of the following questions: (Each 7 Marks) 14
 - 1. Enlist basic factors that very frequently occur in an arbitrary transfer function. Explain each of them in detail.
 - 2. Compare log-magnitude curves with phase plots.
 - 3. Sketch root-locus plot for the system with complex-conjugate open-loop poles described below.

$$G(s) = \frac{K(s+1)}{s^2 + 2s + 3}$$
, $H(s) = 1$

4. Explain in detail relative stability.